Context-Based Probabilistic Scene Interpretation

نویسندگان

  • Bernd Neumann
  • Kasim Terzic
چکیده

In high-level scene interpretation, it is useful to exploit the evolving probabilistic context for stepwise interpretation decisions. We present a new approach based on a general probabilistic framework and beam search for exploring alternative interpretations. As probabilistic scene models, we propose Bayesian Compositional Hierarchies (BCHs) which provide object-centered representations of compositional hierarchies and efficient evidence-based updates. It is shown that a BCH can be used to represent the evolving context during stepwise scene interpretation and can be combined with low-level image analysis to provide dynamic priors for object classification, improving classification and interpretation. Experimental results are presented illustrating the feasibility of the approach for the interpretation of facade images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Scene Models for Image Interpretation

Image interpretation describes the process of deriving a semantic scene description from an image, based on object observations and extensive prior knowledge about possible scene descriptions and their structure. In this paper, a method for modeling this prior knowledge using probabilistic scene models is presented. In conjunction with Bayesian Inference, the model enables an image interpretati...

متن کامل

Ontology-Based Realtime Activity Monitoring Using Beam Search

In this contribution we present a realtime activity monitoring system, called SCENIOR (SCEne Interpretation with Ontology-based Rules) with several innovative features. Activity concepts are defined in an ontology using OWL, extended by SWRL rules for the temporal structure, and are automatically transformed into a high-level scene interpretation system based on JESS rules. Interpretation goals...

متن کامل

Probabilistic Classification of Image Regions using an Observation-Constrained Generative Approach

In generic image understanding applications, one of the goals is to interpret the semantic context of the scene (e.g., beach, office etc.). In this paper, we propose a probabilistic region classification scheme for natural scene images as a priming step for the problem of context interpretation. In conventional generative methods, a generative model is learnt for each class using all the availa...

متن کامل

Probabilistic Classification of Image Regions using Unsupervised and Supervised Learning

In generic image understanding applications, one of the goals is to interpret the semantic context of the scene (e.g., beach, office etc.). In this paper, we propose a probabilistic region classification scheme for natural scene images as a priming step for the problem of context interpretation. In conventional generative methods, a generative model is learnt for each class using all the availa...

متن کامل

On Scene Interpretation with Description Logics

We examine the possible use of description logics (DLs) as a knowledge representation and reasoning system for high-level scene interpretation. It is shown that so-called aggregates composed of multiple parts and constrained primarily by temporal and spatial relations can be used to represent high-level concepts such as object configurations, occurrences, events, and episodes that are required ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010